
University of Amsterdam

Encyclopedia of AI project
.

Tic-Tac-Toe
Tic-tac-toe on fields of size n with m dimensions

Comparisons and analysis of different sizes, dimensions, heuristics and
search depths.

Authors:
Andreas van Cranenburgh
Ricus Smid

Supervisor:
Maarten van Someren

January 31, 2007

Abstract

We made a Prolog implementation of the game of tictactoe, on
fields of size n in m dimensions, using minimax. This paper shows
measurements and presents two new heuristics.

Contents

1 Introduction 2

2 The experiment 2
2.1 Implementation . 2
2.2 Heuristics . 3

3 Analysis of results 4
3.1 Search depth and number of states 4
3.2 Gametype: 3x3 . 5

3.2.1 Does it matter who plays first? 5
3.2.2 The effect of search depth 5
3.2.3 Number of states . 5
3.2.4 Heuristics . 6

3.3 Gametype: 3x3x3 without gravity 7
3.3.1 Does it matter who plays first? 7
3.3.2 Number of states . 7
3.3.3 Heuristics . 8

3.4 Gametype: 3x3x3 with gravity 8
3.4.1 Does it matter who plays first? 8
3.4.2 Number of states . 9
3.4.3 Heuristics . 9

3.5 Gametype: 4x4 . 10
3.5.1 Does it matter who plays first? 10
3.5.2 Number of states . 10
3.5.3 Heuristics . 10

4 Conclusion 10

5 References 12

6 Appendix 12
6.1 Pseudocode for upper bound on number of states 12

1

1 Introduction

In the context of the first-year course Encyclopedia of AI, we have developed
code to simulate playing the game of tic-tac-toe1. This is to explore the use
of mini-max and heuristics. In this paper we will analyse what happens when
search depth, heuristics, the size and the number of dimensions in the games
are varied.

2 The experiment

Our experiment will be concerned with the following questions:

1. Does it matter who plays first?

2. What is the effect of search depth?

3. What is the difference between 2D and 3D games?

4. What is the difference between 3x3 and 4x4 games?

5. What is the effect of different heuristics on gameplay?

6. What is the effect of search depth on the number of states?

This paper evaluates these questions for 3x3, 4x4 and 3x3x3 games. The
approach was to run a number of games, varying paramaters such as size,
dimensions, heuristics and search depth. Time allowing, we tried to run
as much games as possible, to make up for random variations introduced
when different possible moves of equal value occur. The results consist of the
number of games won, the amount of states visited by each player, and the
time per game.

2.1 Implementation

With a 3x3 field, a very straightforward implementation can just store the
state as a list of 9 elements, where each element is empty or contains either
a nought or a cross. Then it follows that all the eight ways of having three-
in-a-row can be checked, using pattern matching.

Obviously, this approach is less practical for 4x4, and even less so for
3x3x3. The number of rules to check for three-in-a-row with 3x3x3 would

1In British, the game is known as noughts and crosses.

2

be 49. Also, to be able to play the game in different configurations without
having to modify the program code, a different solution is called for.

Our Prolog code [1] stores the state as two lists, one for crosses and one
for noughts. The lists consist of coordinates where a nought or cross has
been placed. Each coordinate is a list, in turn, where the length depends on
the number of dimensions currently in use. In two dimensions, a coordinate
will thus contain X and Y, in three dimensions X, Y and Z, et cetera.

To generate a list of valid moves simply all possible coordinates are con-
sidered, and pruned by checking membership of the two lists in the state.
For 3x3x3 games we added an option to simulate ‘gravity’, so that pieces will
fall like in the game of four-in-a-row.

Checking if either player has won is doing by creating a list of all possible
combinations of length n, where n is the size of the field, and checking ev-
ery combination for characteristics of a three-in-a-row configuration. Before
checking for these characteristics the coordinates are sorted, perhaps bet-
ter described as aligned. Then each X coordinate is compared to the others,
looking if they are all equal, or form a sequence (ie. 1,2,3 or 3,2,1). The same
for each Y coordinate, and so forth till all coordinates have been compared.

Initially, a simple heuristic, employing a lookup table, was used. These
pieces were then tied together with a standard minimax [3] implementation
derived from [4]. A very simple user interface asks what size, dimensions,
search depth and heuristic to use, and how many games to play. A so-called
‘pretty print’ procedure then outputs all moves as they are being made. Un-
fortunately rendering a 3D representation of a 3x3x3 game was not feasible,
so three flat representations will have to do.

2.2 Heuristics

The heuristic is the ‘smart’ part of the gameplay. It allows the computer
to choose a move without searching the whole state space to the end. The
existing heuristic we used wasn’t very good, and neither very flexible (it
needed to be adapted to every size and dimension of playing field to be
usable). It worked by assigning a value to each location on the playing field,
representing the number of possible wins in that location. So that means the
middle square is always the most valuable, then the corners, then the rest.
This does not take the already placed noughts and crosses into account. For
example putting your cross in a corner somewhere, even though it will be
completely surrounded by noughts, still gives a high score by this heuristic.

We developed a different heuristic that counts the number of empty neigh-
bor squares. After having implemented this heuristic, it turns out that this
leads to the noughts and crosses being randomly scattered throughout the

3

playing field, which is not really useful. A second version counts neighbor
squares that are either empty or occupied by the player the heuristic is eval-
uated for. From preliminary experiments, it seems this heuristic is almost as
good as the heuristic that assigns static values to locations – with the advan-
tage that this one doesn’t need a hard-coded lookup table. This heuristic is
implemented as heuristic 2.

Another heuristic, heuristic 3, is based on the idea that the only way to
win tic tac toe is to make a trap by making two rows of 2 noughts with no
crosses in either row (in a game with size 3). This heuristic counts all the
rows that has one nought and no cross and gives for every such a row a value
of 1. It also counts the rows that have two noughts and no cross and gives
those a value of 8. It will always choose an option with two rows with two
noughts (the trap) above any other option except when there is a winning
move or when a winning move has to be prevented.

Currently the heuristic only works for size 3 in 2 and 3 dimensions. It
should however not be very difficult to make the code more generable. The
current implementation performs better then the other heuristics we have
implemented. It is however more computational expensive then heuristic 1.

3 Analysis of results

For detailed results, refer to the appendix. What follows are selected results
that answer our research questions.

3.1 Search depth and number of states

Naturally, the higher the search depth, the more states will be visited by the
minimax algorithm. An upper bound (ie. worst case scenario) for the number
of states that will be visited can be found in the appendix, in pseudocode.

For example, if you play on a 3x3 field, and use search depth 2, the result
would be:

9 ∗ 8 + 7 ∗ 6 + 5 ∗ 4 + 3 ∗ 2 = 140

But as said, this is only an upper bound. If one player wins, no further
states will be made. Also, if you’re the second player, you’ll visit a little less
states. In the following paragraphs the upper bound will also be discussed
seperately for each gametype.

4

3.2 Gametype: 3x3

In the original tic tac toe there can be no winner when the game is played
properly[2]. The results show indeed that with the same depth (higher then
1) and a proper heuristic all the games end in a draw.

3.2.1 Does it matter who plays first?

With heuristic 0, that only checks for a winning state and is random other-
wise, the results from tests with different combinations of depths, show that
the starting player has a great advantage over the other player.

Heur o/x Win % o x draw States/game x o Time
0/0 52.2 19.4 21.3 369 236 0.07

Table 1: Results for gametype 3x3

3.2.2 The effect of search depth

Considering heuristic 1, the results show that when one player has a depth
of 2 or higher and the other player has depth 1, the player with the higher
depth will win, regardless of who starts the game. When both players have
a depth of at least 2, the game will end in a draw.

There are some exceptions however. When a player uses search depth
3, somehow this is disadvantageous for the player. We currently have no
explanation for this. We only found this effect in the game of 3x3.

Considering heuristic 3 the only game that didn’t always end in a draw,
was the game where the starting player had depth 2 and the other player a
depth of 1. Apparently heuristic 3 plays this game smart, since smart play
will always end in a draw.

3.2.3 Number of states

heur depth Win o Win x draw States o States x Time/game
1/1 9/9 0 0 100 278190 28112 217.00
2/2 9/9 0 0 100 278254 28224 313.00
3/3 9/9 0 0 100 279198 32659 349.16

Table 2: Maximum number of states

5

We looked at the number of states with a number of games with search
depths from 1 to 9; see table 2.

A search depth of 9 covers the whole state space, so you get the maximum
number of states.

The upper bound for the number of states of tic tac toe is (mn)!, with m
= game size and n = dimensions. For a 3x3 game this is 9!

With a search depth of 9 (for the starting player) the number of states is
given by:

9! + 7! + 5! + 3! + 1! = 9! = 37000

In practice, there a are a lot of forbidden states within this upper bound
and the amount will be lower. The results show that the starting player only
needs to make 28000 states to cover the whole game; see table 3.

The second player, whose upper bound is 8! = 40.000, only needs to
make around 30.000 states. So the number of states is around 75% of the
upper bound for both players, when searching the whole game tree.

When the search depth is 1, the first player needs to make

9 + 7 + 5 + 3 + 1 = 25

...states for a full play. This is about the same as our results (some of the
games didn’t end up with a full board).

depth states
1 23
2 162
3 929
4 4753
5 20900
6 75434
7 114914
8 214983
9 278538

Table 3: Number of states

3.2.4 Heuristics

We let the heuristics play against each other. Heuristic 3 performed best as
is shown in the table. With a search depth of 4 against 1 it won all the games

6

Overall Heur 1-2: h1 h2 draw
. 42.5 0 57.5

Overall Heur 2-3: h2 h3 draw
. 0 46 54

Overall Heur 1-3: h1 h3 draw
. 0 8.3 91.7

Table 4: Comparison of heuristics

against heuristic 1 even though heuristic 1 started the game. The other way
around all the games ended in a draw.

Heuristic 2 performed worse than the other two. It lost all games against
both heuristic 1 and 3 when playing both with a search depth of 4.

3.3 Gametype: 3x3x3 without gravity

When 3x3x3 is played well, the starting player should always be able to win
in 4 moves.

3.3.1 Does it matter who plays first?

The starting player wins around 70 % of the games, which is no surprise.
Heuristic 1 performs best with 85 % of wins for the starting player. Heuristic
3 performs badly when a player has a search depth of 1.

For any other search depth, the starting player, or the one with the higher
depth wins all games, so the heuristic performs very well for search depths
above 1.

3.3.2 Number of states

The upper bound for the number of states is:

(mn)! = (33)! = 27!

The real amount might be 75% of this according to the number of states
of a 3x3 game. The number in practice will always be a lot lower, since most
games are won pretty quickly, and no game ends in a draw,

The amount of states created for depths from 1 to 3 is shown in the table
below.

Depending on the length of the game, the upper amount of states created
with a depth of 1 should be: 27 + 25 + 23 + 21+ ..

7

depth states
1 85
2 2542
3 43195

Table 5: Number of states

With depth 2: 27 ∗ 26 + 25 ∗ 24 + 23 ∗ 22 ...
and depth 3: 27 ∗ 26 ∗ 25 + 25 ∗ 24 ∗ 23 + 23 ∗ 22 ∗ 21 ...
The mean amount of states made in our tests is of course lower than the

upper bound, but still this amount can get pretty high pretty quickly with
greater search depths.

3.3.3 Heuristics

Overall Heur 1-2: h1 h2 draw
. 55 45 0

Overall Heur 2-3: h2 h3 draw
. 50 50 0

Overall Heur 1-3: h1 h3 draw
. 50 50 0

Table 6: Comparison of heuristics

Heuristic 2 performs slightly worse than the other heuristics. Heuristic
1 and 3 perform the same, but heuristic 3 is the only heuristic that won all
games in 4 moves, where heuristic 1 needed sometimes more moves.

3.4 Gametype: 3x3x3 with gravity

The concept of gravity here refers to the idea that a nought or cross will fall
to the ground, or on another nought or cross – similar to how the pieces fall
in four-in-a-row. 3x3x3 With gravity is a more interesting game than 3x3x3
without gravity, since it is more difficult to win (ie. to make a trap).

3.4.1 Does it matter who plays first?

The starting player has, again, a pretty big advantage winning around 70%
of the time in all variants.

8

Again, depth 1 doesn’t work too well for heuristic 3. Still it has the
highest amount of wins for the starting player. Above depth 1, all starting
players or the player with the higher depth wins the game.

3.4.2 Number of states

The amount of possible states for the first move is the same as for 3x3, which
is 9.

After the first move, still 9 options are available, since the other player
can build on the first move.

The amount of possible moves goes down to 8 as soon as one vertical row
is full. Our guess is that the bottom of the board will become full twice as
fast as the second layer and the second layer twice as fast as the third layer.

So after 7 moves, 4 moves are made in the first layer, 2 in the second
layer and 1 in the third layer. After 14 moves, two moves are made in the
third layer. After that, the first layer is almost full and the other layers start
getting full more quickly.

For a search depth of 1 the number of states made by the first player is
approximated by:

9 + 9 + 9 + 9 + 8 + 8 + 8 + 7 + 7 + 6 + 6 + 5 + 3 + 1

... in case the game is played until the board is full.
But with rising search depths, every virtual move can be followed by

another, so the complexity grows fast with growing depths, as we can see in
the table. The values are pretty much the same as in 3x3x3 without gravity.
But it should be taken into consideration that the games for that gametype
were much shorter.

depth states
1 80
2 2500
3 45000

Table 7: Number of states

3.4.3 Heuristics

For this gametype, heuristic 1 outperforms both other heuristics. When the
depth is higher than 3 however, heuristic 3 outperforms heuristic 1, both in
wins and in the amount of moves needed to win. (see table in appendix)

9

3.5 Gametype: 4x4

3.5.1 Does it matter who plays first?

The difference between the starting player and the other player is smaller
than in the other games. The starting player wins around 24 % of the games,
the other player around 14%. all the other games ended in a draw.

3.5.2 Number of states

The upper bound is:

(42)! = 2 ∗ 1013

Since most games end in a draw, the number of states is pretty high in
practice.

For depth 1 the starting player should make around 16 + 14 + 12 + 10 +
8 + 6 + 4 + 2 = 72 states.

The complexity seems to be approximately 70 ∗ 10n as can be seen in our
results.

depth states
1 68
2 750
3 7600
4 84000

Table 8: Number of states

3.5.3 Heuristics

Since heuristic 3 was only implemented in games with size 3, only heuristic
1 and 2 were tested (besides heuristic 0).

In this case, heuristic 2 performs the same as heuristic 1. A game can
according to our tests only be won, when there is a big difference in search
depth. Heuristic 2 managed to beat heuristic 1 in all games when it was the
starting player and had a depth of 4 against 1.

4 Conclusion

Tic-tac-toe is a trivial game, a fact which can not be changed by playing it
on more dimensions or a bigger playing field. Given a reasonable heuristic

10

and sufficient search depth, minimax will converge to perfect play – that is,
games result either in a draw or in the first player winning.

It can be concluded that the first player has a clear advantage, be-
cause each move will improve its position. Higher search depths improve
the chances of winning, provided a proper heuristic is used. With sufficient
search depths, in 3D games the first player will win; in 2D games, there will
always be a draw. To win in a 4x4 game, the difference in search depth needs
to be bigger than for 3x3 games. The average number of states per game as
a function of the search depth is biggest in 3x3x3 games without gravity, and
smallest in 3x3 games.

Heuristic 3 performs best (in gametypes it supports), provided the search
depth is 2 or greater. Heuristic 2 works in all gametypes, but performs worse
than 1 and 3, except in 4x4 games. Heuristic 1 performs better in terms of
speed and efficiency.

11

5 References

1. https://unstable.nl/andreas/ai/encai/tictactoe.pl - tested to
work on SWI-Prolog

2. 2006: Weisstein, Eric W. ”Tic-Tac-Toe.” From MathWorld – A Wol-
fram Web Resource. http://mathworld.wolfram.com/Tic-Tac-Toe.
html

3. 2007: See Wikipedia, Minimax, http://en.wikipedia.org/wiki/Minimax

4. 2001: Bratko, Ivan. ”Prolog programming for AI”, third edition; page
586.

6 Appendix

6.1 Pseudocode for upper bound on number of states

MaxNumberOfStates(squares, depth):

squares: number of squares in the field/space

depth: the search depth

#returns: upper bound of states that will be visited by minimax

states = 0

for legalMoves = squares to 0 step -2: #eg. 9 7 5 3 1

statesPerMove = 1

for a = 0 to depth - 1:

statesPerMove *= (legalMoves - a)

states += statesPerMove

return states

12

