
Persistent Binary Search Trees
Datastructures, UvA. May 30, 2008
0440949, Andreas van Cranenburgh

Abstract

A persistent binary tree allows access to all previous versions of the tree. This
paper presents implementations of such trees that allow operations to be undone
(rollback) as well. Two ways of attaining persistence are implemented and com-
pared. Finally, a balanced version (AA tree) is compared to an unbalanced version.

1 Introduction

According to the NIST dictionary of algorithms and datastructures, a persistent
datastructure is “a data structure that preserves its old versions, that is, previous
versions may be queried in addition to the latest version.”1 There exist at least
four types of persistence (Driscoll et al., 1989):

Naive persistence Examples are making a copy of the whole tree after each up-
date, or storing a history of update operations while only retaining the last
version of the tree. In general these methods either waste space (first exam-
ple), or have slow access time to older versions (second example).

Partial persistence Each version of the tree is retained, but only update oper-
ations on the last (live) version of the tree are allowed. The versions form a
linear sequence.

Full persistence Older version are kept and can be updated as well. The versions
form a Directed Acyclic Graph (DAG).

Confluent persistence Trees can be melded with older versions. This is analo-
gous to version control systems such as cvs and svn, where revisions can be
merged.

This paper concerns partially persistent trees, with the added operation of
rollback, which can promote an arbitrary earlier version of the tree to live ver-
sion, allowing it to be updated. Note that this rollback operation itself cannot be
undone, to simplify matters. This behaviour is analogous to the “unlimited undo”
of text editors: although each older version is accessible, a modification destroys
the versions after that and makes redo, the opposite of undo, impossible.

2 Achieving partial persistence

2.1 Path copying

A simple though naive way of achieving partial persistence is path copying. Instead
of copying the whole tree, only the nodes on the path to a modified node can

1Algorithms and Theory of Computation Handbook, CRC Press LLC, 1999, ”persistent data struc-
ture”, in Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National
Institute of Standards and Technology. 4 January 2005. (accessed May 30, 2008) Available from:
http://www.nist.gov/dads/HTML/persistentDataStructure.html

1



be copied. This means at least log n nodes have to be copied, for a perfectly
balanced tree; but in the worst case, in a degenerate tree all nodes have to be
copied. Despite these shortcomings, the advantage of path copying is that it is very
easy to implement. All destructive assignments are replaced with updated copies
of nodes; afterwards the root is added to a version list.

2.2 Node copying

An optimally efficient way of implementing partial persistence is node copying
(Driscoll et al., 1989). By adding an extra field to nodes, each node can con-
tain two different versions of itself. When a node already contains a modification a
copy of it is made. This means that instead of copying the whole path it is possible
to retain the path to a node, while only modifying the node pointing to the new
node. This scheme uses O(1) worst case space, and O(1) extra time, compared to
an ephemeral (non-persistent) datastructure.

Hidden behind this Big-oh notation there hides a constant slowdown, since
traversing the tree requires an extra comparison on each node, to see if the node
contains a modification which corresponds to the version being requested. This
slowdown on accesses is not present with path copying; on the other hand, the
unnecessary copying of nodes on updates slows down path copying by a logarithmic
factor.

3 A simple balanced tree

The most popular balanced binary search tree seems to be the Red-Black tree and
the AVL tree. Both trees have complicated balancing schemes, having a multitude
of rebalancing cases after each update.

The AA tree (Anderssen, 1993) is a constrained version of the Red-Black tree.
Only right nodes are allowed to contain “red” nodes. Also, instead of storing
balance information as a bit in each node, nodes contain a level field describing the
height of their biggest subtree. This results in only two balance operations: skew
(conditional right rotation) and split (conditional left rotation). Insertion requires
one skew and one split operation, whereas deletion (typically the most complicated
operation in a balanced tree) requires only three skews and two splits.

4 Implementation

The implementation is in Java, with a focus on simplicity, not speed. Hence the
use of recursion instead of the more involved iterative traversal using an explicit
stack. Also accessing or updating a pointer field, a frequently occurring operation,
is done with auxiliary functions, which can be expensive; but inlining them would
case tedious code duplication.

Access to previous versions is provided with a search method taking an op-
tional version argument, as returned from earlier update operations. On top of
that previous versions can be promoted to current (ie., mutable) version with the
rollback operation.

In order for rollback to work on all previous versions some additional book-
keeping has to be done. Namely two lists are maintained; the first containing the

2



root corresponding to each version while the second contains references to each
node that has been mutated. Upon rolling back this last list is unwinded, removing
each mutation as it goes.

5 Performance

Benchmarking has been done with two different data sets. To measure average case
performance an array of random integers is used; whereas worst-case performance is
measured with a sorted, monotonically increasing sequence (ie., the counter variable
of the for-loop). Each benchmark run performs a series of insertions, lookups,
rollbacks and finally deletions.

Testing worst-case performance proved to be too much for the unbalanced trees;
the node copying implementation crashed due to an unknown bug (traversal enters
an endless series of null pointers), while the path copying implementation simply
runs out of memory. Since the unbalanced versions are presented for comparison
only and not for actual usage with possibly worst-case data, I have neglected to fix
these shortcomings.

Time complexity has been measured by the System.currentTimeMillis method
of the standard library, while memory usage has been approximated by subtracting
the amount of free heap space from the total heap size, after repeatedly summoning
the garbage collector to free all available space.2

5.1 Average case perfomance

n min mean std dev max
Red-Black tree (baseline) 1000 47904 47904 0 47904

3000 143856 143856 0 143856
5000 239904 239904 0 239904

AA-Tree, Node Copying 1000 313120 369978 85231 632712
3000 920920 1058569 248125 1914152
5000 1516800 1805062 559645 3752264

BST, Node Copying 1000 292680 331883 79688 645928
3000 880952 971937 151794 1432792
5000 1470008 1666562 403379 3258848

BST, Path Copying 1000 1180808 1198809 40500 1357320
3000 4255824 4315701 136016 4851560
5000 7389712 7480430 204906 8283320

Table 1: Memory usage (bytes)

As can be seen in table 1 and 2, path copying requires significantly more mem-
ory, linearily increasing, whereas the node copying implementations grow logarith-
mically. Note that the balanced AA tree does require more space, due to the

2Inspired by:
http://www.roseindia.net/javatutorials/determining_memory_usage_in_java.shtml

3



rotations increasing the amount of modified nodes per operation. But in this case
the difference is a constant factor, apparantly a factor of 2 looking at the data.

n min mean std dev max
Red-Black tree (baseline) 1000 24.00 26.17 1.05 28.00

3000 87.00 89.20 1.52 92.00
5000 151.00 157.10 3.04 163.00

AA-Tree, Node Copying 1000 99.00 113.23 3.87 124.00
3000 351.0 582.6 49.5 633.0
5000 596.0 703.1 24.6 752.0

BST, Node Copying 1000 39.00 42.23 2.34 53.00
3000 140.00 146.17 5.19 159.00
5000 237.0 251.3 10.1 268.0

BST, Path-Copying 1000 42.00 47.03 4.13 57.00
3000 150.0 168.0 24.3 263.0
5000 266.0 301.2 48.3 467.0

Table 2: Cputime (ms)

The cpu timings of the AA tree are longer than those of their unbalanced coun-
terparts. This could be because of the extra overhead associated with the getters
and setters employed in the AA tree implementation. Either way, the difference is
a constant factor and does not affect its time complexity.

5.2 Worst case performance

n min mean std dev max
Baseline Red-Black tree 1000 29336 47236 3469 48000

3000 141872 143929 389 144000
5000 240000 240000 0 240000

AA-Tree, Node-Copying 1000 370832 505154 71429 731696
3000 1134672 1507562 223002 2289208
5000 1869464 2559440 364014 3706656

Table 3: Memory usage (bytes)

In table 3 and 4, as with the average case results, node copying appears to
require extra space by a constant factor of 10. The fact that the unbalanced search
trees could not be benchmarked for this test speaks volumes as to the necessity of
the node copying scheme for persistence.

4



n min mean std dev max
Baseline Red-Black tree 1000 34.00 36.63 1.85 44.00

3000 120.00 122.97 2.46 130.00
5000 207.00 213.07 3.04 221.00

AA-Tree, Node-Copying 1000 84.00 86.63 2.34 92.00
3000 269.0 281.6 7.1 293.0
5000 483.0 501.3 16.2 551.0

Table 4: Cputime (ms)

6 References

Driscoll et al., 1989, “Making Data Structures Persistent”, journal of computer
and system sciences, vol. 38, no. 1, february 1989. http://www.cs.cmu.edu/

~sleator/papers/Persistence.htm

Andersson, 1993, “Balanced Search Trees Made Simple” In Proc. Workshop on
Algorithms and Data Structures, pages 60–71. Springer Verlag. http://user.it.
uu.se/~arnea/abs/simp.html

5


